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Abstract

Prior-knowledge-based feedforward networks have shown superior performance in modeling chemical processes. In this

paper, an improved differential evolution (IDEP) algorithm is proposed to encode prior knowledge simultaneously into

networks in training process. With regard to monotonic prior knowledge, IDEP algorithm employs a flip operation to adjust

those prior-knowledge-violating networks to conform to the monotonicity. In addition, two strategies, Levenberg–Marquardt

descent (LMD) strategy and random perturbation (RP) strategy, are adopted to speed up the differential evolution (DE) in the

algorithm and prevent it from being trapped by some local minimums, respectively. To demonstrate the IDEP algorithm’s

efficiency, we apply it to model two chemical curves with the increasing monotonicity constraint. For comparison, four

network-training algorithms without prior-knowledge constraints, as well as three existing prior-knowledge-based algorithms

(which have some relationship and similarities with IDEP algorithm), are employed to solve the same problems. The simulation

results show that IDEP’s performance is better than all other algorithms. As a conclusion, IDEP algorithm and its promising

prospective will be discussed in detail at the end of this paper.
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1. Introduction

Three-layer feedforward networks have been com-

monly used in modeling chemical processes because it

can approximate arbitrary complex function with any

precision [1,2]. Generally, training networks to

approximate functions can be formulated as minimi-

zation of an error function, such as the summed square

error between target and actual outputs over all train-

ing data, by iteratively adjusting connection weights.

The networks trained in this way will only depend on

the training data, and no inherent information of the

chemical process is considered during the modeling.

However, functional relationship of the actual

chemical process probably possesses some special

properties, such as monotonicity and concavity,

which exist apart from the sample data. Such property
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is called prior knowledge of the model. Usually, prior

knowledge is obtained according to some first-prin-

ciple models so it is reliable. But the actual training

data are finite, sparse and noisy. In addition, they may

not be able to embody the prior knowledge very well

so the network models that completely rely on these

data may be inaccurate and even violate the prior

knowledge. Accordingly, its performance and practic-

ability are degraded. Moreover, since never used in

modeling process explicitly, the well-grounded prior

knowledge of the chemical process is overlooked and

wasted.

To solve this problem, some researchers, such as

Joerding and Meador [3], Thompson and Kramer [4]

and Chen et al. [5,6], proposed some methods to

encode prior knowledge into neural networks, called

prior-knowledge-based methods. Prior-knowledge-

based methods can be classified into three classes,

namely weight constraint (WC) methods, architecture

constraint (AC) methods and data constraint (DC)

methods [3,6]. The networks trained by these methods

have turned out to perform better in simulation experi-

ments [5,6], and they can solve the overfitting prob-

lem very well [6]. However, the existing prior-knowl-

edge-based methods still have some disadvantages.

The existing WC methods, such as Joerding’s penalty

function (J.PF) method [3,6], are not very good at

approximation. The existing AC methods, such as

exponential weight (EW) method [6], provide rela-

tively little freedom in searchable weight space so it

is usually difficult to obtain the training goal. The

existing DC methods, such as interpolation (IP)

method [6], may possibly not impose prior knowl-

edge on networks very well in some situations.

Therefore, it is quite necessary and desirable to

develop a method that can combine the information

of both the prior knowledge and the training data into

neural networks simultaneously and efficiently.

On the other hand, a class of stochastic search and

optimization methods, called evolutionary algorithms

(EAs), has received considerable and increasing inter-

est over the last decade [7]. Based on the biological

evolution in nature, these algorithms apply the prin-

ciple of survival of the fittest to produce successively

better approximations to an optimum. EAs have also

been applied to train neural networks by reformulating

the training process as the evolution of connection

weights and the error function as the fitness to be

optimized [8,9]. The evolutionary training algorithms

are preferable to the first-order gradient-descent-based

training algorithms in their reliability and faster con-

vergence speed [10]. However, because networks’

weight space is real-valued, large and very complex,

it is still a relatively time-consuming task for normal

EAs, such as Goldberg’s [11] SGA, to train networks.

Fortunately, Storn and Price [12] present a differential

evolution (DE) algorithm. It turns out to be one of the

best genetic algorithms for solving real-valued prob-

lems because it can find the best or satisfactory

solutions very fast. Therefore, it is soon adopted to

train neural networks [13], which is called NC-DET

algorithm in this paper. Despite the great speed

improvement, NC-DET is still much slower when

compared with some second-order optimization algo-

rithms, such as the conjugate gradient algorithm

[14,16] and Levenberg–Marquardt (LM) algorithm

[15]. Therefore, it is necessary to improve NC-DET

algorithm in order to make it a practicable training

algorithm for neural networks.

In this paper, an improved differential evolution

(IDEP) algorithm is proposed to train neural networks

and encode domain-related prior knowledge into them

simultaneously. In IDEP algorithm, with regard to

monotonic prior knowledge, a flip operation is

employed to adjust those prior-knowledge-violating

networks to conform to the monotonicity. In addition,

some other genetic operations, e.g. selection, also help

encode prior knowledge into networks, and two

strategies, Levenberg–Marquardt descent (LMD)

strategy and random perturbation (RP) strategy, are

employed to speed up the evolution process and

prevent it from converging at some local minimums,

respectively.

To validate its effectiveness, IDEP algorithm is

applied to model the true boiling point curve of crude

oil and the curve of effect of pressure on entropy with

prior knowledge of increasing monotonicity. After

comparing with the simulation results of other net-

work modeling methods, including four network-

training algorithms without prior-knowledge con-

straints and three existing prior-knowledge-based

algorithms, we conclude that IDEP algorithm is faster,

more reliable and robust, and it can encode prior

knowledge into networks very well.

At the end of this paper, the simulation results and

key parts of IDEP algorithm are analyzed in detail. In
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addition, its promising prospective and future works

are discussed as a conclusion.

2. Neural network and prior knowledge

In this section, the feedforward network and prior

knowledge of increasing monotonicity used in this

paper will be introduced in detail.

2.1. Structure of the feedforward network

A commonly used three-layer feedforward network

model net is illustrated in Fig. 1. Here, the first layer is

the input layer, which accepts an m-dimensional input

vector x. The second layer has n hidden nodes, and

each one uses the following tansig function g(x) to

process the weighted input:

gðxÞ ¼ 2

1þ e�2x
� 1 ð2-1Þ

The third layer is the output layer, which has q

nodes and uses linear transfer function. The output

vector is a q-dimension vector ŷ, which is the pre-

diction of the target output y. Let W[2] and W[3] denote

the weight matrices between layers one and two and

layers two and three, respectively, including the

biases. wij
[h], the element of W[h], denotes the inter-

connection weight between the jth node of the

(h� 1)th layer and the ith node of the hth layer. bi
[h]

denotes the bias to the ith node of the hth layer (h = 2,

3). Thus, the network model net can be expressed by

the following function:

ŷðxÞ ¼ f ðW; xÞ ¼ W ½3�gðW ½2�xÞ: ð2-2Þ

For brevity, we will substitute W for W[2] and W[3]

in some of the formulas.

In this paper, with regard to monotonic prior

knowledge, the input and output vectors x and y are

both one-dimensional vectors, i.e. m = q = 1. There-

fore, in the following text, they will be denoted by

scalars x and y, respectively. In addition, (xi,yi), i= 1,

2, . . ., l represents the training data accordingly.

2.2. Parameters for network training

The general parameters for network training are:

the performance function (PE), the training goal

(goal) and the maximum number of iterations

(epochs). The training will stop if the number of

iterations exceeds epochs or PE gets lower than goal.

In the following text, we will take PE ¼ SSE ¼
P

i

ðyi � ŷðxiÞÞ2 as the performance function unless there

is a special explanation.

2.3. Prior knowledge of increasing monotonicity

A function y = f(x) is called to be monotonically

increasing in its domain Dx if:

bx1; x2aDx; if x1 < x2 then f ðx1ÞVf ðx2Þ: ð2-3Þ

Many chemical curves, such as the true boiling point

curve of the crude oil, the curve of effect of pressure on

entropy and the curve of enthalpy on temperature, have

been known as monotonically increasing, which is a

prior knowledge. If we use feedforward networks to

approximate those curves, it is important to insure that

the networks conform to the prior knowledge.

2.4. Performance criteria for network modeling

methods

Generally, the performances of different network

modeling methods are inspected in the following three

aspects: the approximation accuracy, the prediction

ability to the testing data and the network model’s

conformance of the prior knowledge.Fig. 1. Three-layer feedforward network.
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For each method, the cross-validation [17,18] is

employed to inspect the approximation accuracy and

prediction ability of a trained network. That is, we

take out a datum from the sample data as temporary

‘testing data’ in turn, and use the remaining data to

model a network and predict on the testing data. The

mean square error (MSE) of the training data for one

model in cross-validation is:

MSE ¼ 1

l

X
i

ðyi � ŷðxiÞÞ2; ð2-4Þ

where l is the total number of the training data. The

approximation accuracy of each method is the mean

of the MSE (denoted by MSE).

The relative prediction error on the current testing

data for one model in cross-validation is:

re ¼
y� ŷðxÞ

y
: ð2-5Þ

The prediction ability for each training method can

be measured by the mean of the AreA values (denoted

by
–––
AreA) and the standard deviation of the re values

(denoted by dre) of the different models in cross-

validation modeled by that method.

As for the conformance of the prior knowledge, in

this paper, we need to analyze the nonmonotonic

intervals of the network function ŷ versus x. To do

this, we calculate the points where ŷV(x) = 0 by a

numerical method, and exclude the inflexions to

determine the nonmonotonic intervals. Because the

nonmonotonic intervals cannot be averaged among

different models, we total the times when the model

has one or several nonmonotonic intervals in cross-

validation. Moreover, we plot the curve and give out

the nonmonotonic interval for one model selected at

random (we just select the first model) in cross-

validation as the delegate. If the selected model has

more than one nonmonotonic interval, the interval

closest to minus infinity will be given out in the

performance data.

3. Some existing prior-knowledge-based methods

3.1. J.PF method

Joerding and Meador [3] presented J.PF method to

impose the increasing monotonicity on feedforward

networks. In their method, a sufficient (but not neces-

sary) condition for ŷ(x) to satisfy the increasing

monotonicity is deduced:

w
½2�
j1 w

½3�
1j > 0; j ¼ 1; 2; . . . ; n; ð3-1Þ

Based on this, J.PF method utilizes the following

performance function to eliminate the nonmonotonic

intervals in network models:

PEðWÞ ¼ SSEðWÞ þ LðWÞ ð3-2Þ

where LðWÞ ¼
P

j lðhw½2�
j1 w

½3�
1j Þðe

hw½2�
j1
w
½3�
1j � 1Þ is a

penalty function with

lðhw½2�
j1 w

½3�
1j Þ ¼

1 hw½2�
j1 w

½3�
1j > 0

0 otherwise

;

8<
:

here, h is a modulatory constant.

In practice, due to the introduction of the penalty

function, J.PF’s approximation accuracy and predic-

tion ability are not very good. Moreover, sometimes, it

even cannot ensure all of the models in cross-valida-

tion are monotonically increasing [6].

Fig. 2. Flip operation.
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3.2. EW method

Chen et al. [6] derive the following sufficient but

not necessary condition for ŷ(x) to be monotonically

increasing:

w
½2�
j1 > 0; and w

½3�
1j > 0 j ¼ 1; 2; . . . ; n; ð3-3Þ

which is obviously stronger than the condition in Eq.

(3-1). In addition, according to Eq. (3-3), they pro-

posed EW method, which replaces the original wj1
[2]

and w1j
[3] in network with ewj1

[2]

and ew1j
[3]

( j= 1,2,. . .,n)
to perform all the weight adjustments and network

computations (the biases are intact and computed in

the original way). Clearly, networks working in this

way are certain to satisfy Eq. (3-3) and, hence,

necessarily conform to the increasing monotonicity.

However, since Eq. (3-3) is a strengthened sufficient

condition, it permits little freedom for the training,

which makes it difficult to obtain the training goal

under some circumstances, thus, hampering the

approximation accuracy and prediction ability.

3.3. IP method

IP method [6] is a kind of DC method. It inter-

polates some data satisfying the prior knowledge into

original sample data, and then utilizes these com-

pound data to train the network; during the training

process, the added artificial data will be deleted

gradually. This method utilizes the interpolation

points to embody the given prior knowledge. Gener-

Fig. 3. LMD strategy.
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ally, the interpolation points are acquired by using

first-principle models and they are equally spaced

with respect to the original data, so that the addition

and deletion of the interpolation points will not have

a significant impact on network models. In IP

method, a parameter d, called the interpolation den-

sity, is used to control the number of the artificial

interpolation data sets.

IP method possesses good approximation accuracy

and prediction ability. However, sometimes, it cannot

ensure that all of the models in cross-validation are

monotonically increasing.

We will see the above properties of J.PF, EW and

IP methods from the examples in Section 6.

4. NC-DET and DEP algorithms

Training a feedforward network can be formulated

as solving the following unconstrained optimization

problem:

min
W

PEðWÞ ð4�1Þ

where the weight matrix W of the network is the

optimization variable. Accordingly, encoding the prior

knowledge of increasing monotonicity into a network

is equivalent to solving the following constrained

optimization problem:

min
W

PEðWÞ

s:t: f ðW; x1ÞVf ðW; x2Þ;bx1 < x2aDx: ð4�2Þ

All the algorithms in optimization theory can be

applied to problems (4-1) and (4-2) and so can the

EAs. In this section, we will employ NC-DET algo-

rithm to solve problem (4-1) and its variant DEP

algorithm to solve problem (4-2).

4.1. NC-DET algorithm

Jouni and Miika [13] adopt DE algorithm

[12,20] to train feedforward networks. Their train-

ing algorithm is called NC-DET algorithm in this

paper. It is a parallel direct search algorithm that

utilizes Np individuals Wi
G (i = 1, . . ., Np) as a

population for each generation G. Each individual

Wi
G=[w1, w2, . . ., wn]i

G consists of all the weight

parameters in a feedforward network. PE(WG) is

the fitness of the individual WG. The smallest

fitness in each generation corresponds to the per-

formance function value in network training proc-

ess. The basic structure of NC-DET algorithm is

described as follows.

(1) Initialization operation: initialize the weight

parameters Wi
0 (i = 1, . . ., Np) with Nguyen and

Widrow’s [19] initialization method, and let Gp 0.

(2) For each individual Wi
G (i= 1, 2, . . ., Np) in the

Gth generation, do steps 3–6 to produce the popula-

tion of the (G + 1)th generation.

(3) Mutation operation: in this operation, a per-

turbed individual Ŵi
G + 1 is generated according to:

Ŵ
Gþ1

i ¼ WG
p þ FðWG

j � WG
k Þ ð4-3Þ

with j, k, pa[1,Np], integer and mutually different and

F>0.

The integers j, k and p are chosen randomly

from the interval [1,Np], and are different from the run-

ning index i. Fa[0,2] is a real constant factor that

Fig. 4. RP strategy.
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controls the amplification of the differential varia-

tion (Wj
G�Wk

G). Note that the individual Wp
G,

which is perturbed to yield Ŵi
G + 1, has no relation-

ship to Wi
G, but is a randomly chosen population

member.

(4) Cross-over operation: to increase the diversity

of the offspring in the next generation, the perturbed

individual Ŵi
G + 1 and the current individual Wi

G are

selected by a binomial distribution to perform the

cross-over operation to generate the offspring. In the

Fig. 5. IDEP algorithm.
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cross-over operation, the jth gene of the ith individ-

ual of the next generation is produced from the

perturbed individual Ŵi
G + 1=[ŵ1, ŵ2, . . ., ŵn]i

G + 1

and the current individual Wi
G=[w1, w2, . . ., wn]i

G

as follows:

wGþ1
ki ¼

wG
ki; if a random number > CR

ŵGþ1
ki ; otherwise;

8><
>:

;

k ¼ 1; . . . ; n; ð4-4Þ

where the cross-over factor CRa[0,1] is set by users.

(5) Pruning operation: after some generations’

evolution, the absolute value of some individuals’

genes may become so large as to ill-conditioned

computations. In this case, the offspring Wi
G + 1 is

pruned to solve this problem:

wGþ1
ki ¼

�Bp þ 2RBp; ifAwGþ1
ki A > Bp

wGþ1
ki ; otherwise;

8><
>:

;

k ¼ 1; . . . ; n; ð4-5Þ

where R is a random number in the interval [0,1] and

Bp is the bound of the absolute value of connection

weights. Generally, Bp is a large positive number,

and in this paper, it is always set to 10,000 for all

DE-based algorithms, including NC-DET, DEP and

IDEP.

(6) Evaluation operation: the offspring Wi
G + 1

competes one-to-one with its parent Wi
G. This com-

petition implies that the parent is replaced by its

offspring if the offspring’s fitness is equal or smaller

than its parent’s. Otherwise, the parent is retained in

the next generation. The evaluation operation is,

therefore, expressed as:

WGþ1
i ¼

WGþ1
i if PEðWGþ1

i ÞVPEðWG
i Þ

WG
i otherwise

;

8<
:

ð4-6Þ
(7) GpG + 1

(8) Repeat of steps 2–7 until either the number of

generation G exceed max generation number epochs

or the smallest fitness in the current generation, i.e.

min(PE(Wi
G)), drops below goal.

(9) Take the individual Wb
Gf with the smallest

fitness from the last generation Gf as the resulting

trained weight matrix for the feedforward network.

Compared with gradient-based training algorithms,

NC-DET algorithm is faster, and it does not depend on

gradient information of the performance function. In

addition, NC-DET algorithm is generally much less

sensitive to initial training conditions. Generally, it

can find a near-optimal set of connection weights

globally, while a gradient descent algorithm can only

find a local optimum in a neighborhood of the initial

solution.

However, although NC-DET algorithm is good at

global search, it performs poorly in localized search,

which makes it much slower than some second-order

search algorithms, such as the conjugate gradient

algorithm [14,16], quasi-Newton algorithm [21] and

LM training algorithm [15]. In addition, usually, the

individuals yielded by NC-DET algorithm tend to

cluster closely at early stage of the evolution

[22,23]. Therefore, as observed in Eqs. (4-3) and (4-

Table 1

Data for the true boiling point of a crude oil

No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p (%) 0 1.53 2.34 3.46 4.40 5.36 6.79 8.21 9.76 11.24 12.78 15.03 17.19 19.59 21.09

t (jC) 75 90.32 107 129 143 165 191 210 230 246 260 280 295 312 321

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

p (%) 23.58 24.75 26.34 28.05 30.71 34.18 35.57 40.95 44.50 47.89 50.21 51.73 54.42 57.32 59.77

t (jC) 339 350 365 380 403 439 467 480 481 482 490 500 510 512 513
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4), the mutation and cross-over operations can hardly

generate new better individuals. This results in a

premature convergence and hence reduces the global

search ability of the algorithm. Finally, NC-DET

algorithm performs without considering prior knowl-

edge constraints, so the trained networks may violate

it greatly.

4.2. DEP algorithm

We ever presented a variant of NC-DET algorithm,

called DEP algorithm, which is able to encode the

prior knowledge of increasing monotonicity into net-

works during its training process. DEP algorithm is

identical to NC-DET except the initialization and

evaluation operations.

In DEP’s initialization operation, the initial popu-

lation is first generated as step 1 of NC-DET algo-

rithm. Then each individual in the population will be

checked whether it conforms to the increasing monot-

onicity or not. Those violating the prior knowledge

will be adjusted to satisfy it though a certain operation

(in this paper, we use the flip operation, which will be

described in detail in Section 5.1). Thus, after the

operation, no individuals in the initial population will

violate the prior knowledge.

In DEP’s evaluation operation, if Wi
G + 1 satisfies

the prior knowledge of increasing monotonicity, it will

competes one-to-one with its parent Wi
G. Otherwise,

Wi
G + 1 is excluded right away and the parent Wi

G is

retained to the next generation.

From DEP’s initialization and evaluation opera-

tions, we can see that during the evolution process

DEP excludes all the individuals that violate the prior

knowledge. Therefore, networks resulted from such a

training process will consequentially satisfy the prior

knowledge.

DEP algorithm imposes the prior knowledge con-

straint on the evolution process, which reduces the

probability of introducing new individuals into the

population through the evaluation operation when

compared with NC-DET algorithm. Therefore, DEP

algorithm is more likely to cluster and prematurely

converge at an early stage of the evolution and it is

more difficult for DEP algorithm to find a global

optimum, which may lead to a poor approximation to

the training data. The simulation results in Section 6

confirm it.

In order to approximate the training data with high

accuracy and encode the prior knowledge as well, an

IDEP algorithm is proposed in the following section.

Compared with NC-DET and DEP algorithms, it is

more fast, reliable and robust. In Section 6, two

chemical examples are employed to demonstrate its

effectiveness.

5. IDEP algorithm

As an improved version of DE, IDEP algorithm

trains networks with both the training data and the

prior knowledge information of increasing monoto-

nicity. The key parts of IDEP algorithm include flip

operation, LMD strategy and RP strategy, and we will

introduce them respectively in this section.

5.1. Flip operation

In Section 3.1, we state that Eq. (3-1) is a sufficient

condition for a network to be monotonically increas-

ing in its domain. Based on this, a flip operation is

introduced to force a network to conform to the

increasing monotonicity by changing the signs of its

weights. Flip operation works as a subroutine, and it

accepts the weight matrixW of a neural network as the

input parameter.

The diagram of flip operation is shown in Fig. 2.

In Fig. 2, step 3 verifies whether the product of the

weight pairs wj1
[2] and w1j

[3] satisfies Eq. (3-1) or not.

If not, the sign of the one among wj1
[2] and w1j

[3] with

a smaller absolute value will be changed. Intuitively, it

seems to flip symmetrically around the origin on the

real axis, so we call it flip operation. The purpose of

choosing the smaller absolute weight value is to

change the original weight matrix as little as possible.

This procedure is performed on all of the weight pairs

of every hidden node. Therefore, after flip operation,

the weight matrix will certainly conform to the

increasing monotonicity.

Note that Eq. (3-1) is not a necessary condition for a

network to be monotonically increasing. Therefore,

there must exist some networks that conform to increa-

sing monotonicity but not satisfy Eq. (3-1). Therefore,

when applied on such networks, flip operation is

not expected to rescue a prior-knowledge-violated net-

work (since it already satisfied the prior knowledge),
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Fig. 6. (a) Comparison between the different methods in modeling the true boiling point curve of crude oil. (b) Comparison between the

different methods in modeling the true boiling point curve of crude oil.
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but to produce a new network that both differs from

the original one and satisfies the prior knowledge.

5.2. LMD strategy

In Section 4.2, we claim DEP algorithm performs

poorly in a localized search, which will decrease its

speed dramatically. To overcome this disadvantage,

IDEP algorithm employs LMD strategy to accelerate

the local search and convergence.

LMD strategy is based on the LM algorithm [15].

LM algorithm is developed to approach second-order

training speed without having to compute the Hessian

matrix. We assume the absolute error is e = yi� ŷ(xi) at

the training datum (xi, yi). When the performance

function is SSE(W), LM algorithm uses the approx-

imation to the Hessian matrix in the following weight

update:

DW ¼ �ðJTJ þ lIÞ�1JT e; ð5-1Þ

where J is the Jacobian matrix, which contains the first

derivations of the network errors with respect to the

weights and biases; l is an modulatory parameter.

Table 2

Performance of the different prior-knowledge-based methods in modeling the true boiling point of a crude oil

Method Mean of

approximation

accuracy (MSE)

Mean of relative

prediction

error (AreA)

S.D. of relative

prediction

error (dre)

Number of nonmonotonic

models/total models

in cross-validation

Nonmonotonic

interval of the first

model in cross-validation

NC-LM 2.9431�10� 6 0.0545 0.0939 27/28 [37.80%, 41.70%]

NC-CGF 4.1291�10� 5 0.2473 0.8648 24/28 [39.70%, 44.70%]

NC-DET 8.4616� 10� 5 35,199.7 186,095 23/28 None

IDEP 3.3430� 10� 6 0.0333 0.0640 0/28 None

DEP 1.0951�10� 4 0.1317 0.5191 0/28 None

J.PF 1.3046� 10� 4 0.2341 0.6861 10/28 None

IP 2.2268� 10� 6 0.0401 0.1046 1/28 None

EW 1.2115� 10� 4 0.0531 0.1006 0/28 None

Fig. 7. Training progress of the different methods in modeling the true boiling point curve of crude oil (the first model in cross-validation).
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When l is zero, it is just Newton’s method [24],

using the approximate Hessian matrix. When l is

very large, it becomes a gradient descent with a small

step size. Since Newton’s method is faster and more

accurate near an error minimum, the aim is to shift

towards Newton’s method as quickly as possible.

Thus, l is set to a small initial value and is increased

when a tentative step would increase the performance

function.

LMD strategy works as an independent subroutine

with five input arguments: the weight matrix W; the

initial value, increasing speed and maximum value of

the modulatory parameter l0, linc and lmax, respec-

tively; and the goal of the performance function perf

(it must be less than or equal to SSE(W)).

The diagram of LMD strategy is shown in Fig. 3.

As we state in Section 5.1, when PE(WV)z perf

and the network satisfies increasing monotonicity in

step 6, the purpose of flip operation in step 7 is to

introduce a new valid network so as to increase the

diversity of the population. In this sense, flip oper-

ation can also be regarded as a kind of perturbation on

the original network. Similar cases happen in the

diagram of RP strategy and IDEP algorithm.

If an updated weight matrix W u is found by which

the network is constructed has a smaller performance

function value than perf and meanwhile conforms to

increasing monotonicity, LMD strategy will exit suc-

cessfully. Otherwise, the modulatory parameter l will

multiplied by linc and steps 3–8 will be repeated until

l exceeds lmax. In such a case, LMD strategy will exit

unsuccessfully.

5.3. RP strategy

Although LMD strategy can accelerate the con-

vergence greatly, too fast descent may result in a local

minimum or premature convergence. To solve this

problem, RP (random perturbation) strategy is

employed to retain the diversity and prevent the evo-

lution from being trapped by some local minimums.

Similar to flip operation and LMD strategy, RP

strategy works like a subroutine, which accepts three

input parameters: the weight matrix W, the magnitude

of the noise q, and the goal of the performance

function perf (it must be less than or equal to PE(W)).

The diagram of RP strategy is shown in Fig. 4.

If a randomly perturbed weight matrix Wu is found

by which the network is constructed has a smaller

performance function value than perf and meanwhile

conforms to increasing monotonicity, then RP strategy

will exit successfully. Otherwise, RP strategy will exit

unsuccessfully.

5.4. IDEP algorithm

The diagram of IDEP algorithm is shown in Fig. 5.

In IDEP algorithm, the initialization in step 2 and

mutation, cross-over and pruning operations in step 5

Table 3

Performance of the different algorithms in modeling the true boiling

point of a crude oil (the first model in cross-validation)

Training

algorithm

Gen PEf Cg/Ct

IDEP 4231.1 9.9986� 10 � 5 10/10

DEP 100,001 0.0036 0/10

NC-DET 100,001 0.0019 0/10

NC-CGF 74.2 0.0011 0/10

NC-LM 22.2 8.6658� 10 � 5 10/10

Table 4

Data for the effect of pressure on entropy for a crude oila

No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pr 0.2 0.25 0.3 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

S 0 0.23 0.29 0.33 0.40 0.46 0.51 0.60 0.64 0.71 0.79 0.84 0.93 1.10 1.32 1.71 2.55

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Pr 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 0.00 7.50 8.00 8.50 9.00

S 3.22 3.30 3.37 3.45 3.51 3.55 3.60 3.61 3.63 3.66 3.67 3.68 3.69 3.70 3.70 3.70

a Reduced temperature Tr = 1.00.
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are same as those in DEP algorithm. Within the loop

from step 4 to 18, first an offspring Wi
G + 1 is

produced (step 5), then flip operation produces a

variant of Wi
G + 1 that satisfies the prior knowledge

(step 7), LMD and RP strategies try to find a better

individual than Wi
G in a local region by using a LM-

like descent method (step 13) or through random

perturbation on Wi
G (step 16), respectively. All

candidates produced by these operations and strat-

egies, as well as Wi
G, will compete together accord-

ing to their fitness and conformance of the prior

knowledge. Only the one that not only has the

smallest fitness but also satisfies the prior knowledge

will survive.

Too frequent performance of LMD strategy may

possibly consume a lot of time and lead to premature

or convergence at local minimum. To avoid this, we

select a random number R in interval [0,1) and

perform LMD strategy only when R>Rlmd, where Rlmd

is a predefined number in interval (0,1). Thus, Rlmd is

used to control the frequency of performing LMD

strategy.

In RP strategy, q is used to control the magnitude

of noise. At the early stage of the training process, a

large value of q can help to escape local minimums

and enlarge the search region. In addition, at the later

stage, the algorithm appeal to a small value of q since

a large one may decrease the convergence speed.

Therefore, an adjustable q may work better than a

constant one. In IDEP algorithm, q is initialized to an

arbitrary constant q0 (step 1) and decrease at a

logarithmic speed (step 19), which is borrowed from

the inhomogeneous simulated annealing algorithm. In

experiments, we find such descent is relatively slow

and smooth, which is helpful to reach a global mini-

mum.

6. Applications in chemistry

6.1. Modeling the true boiling point curve of crude oil

Crude oil is a very complicated mixture mainly

containing different kinds of hydrocarbons, organic

sulfur, nitrogen and oxygen compounds and trace

inorganic compounds. Each component has different

boiling point. Usually, we plot the true boiling point

curve of crude oil by taking the mass percentage p of

the distilled component as the abscissa, and the

distilled temperature t as the ordinate. The curve can

reflect the composition of the distilled crude oil.

Therefore, to build a model that takes p as the

independent variable and t as the dependent variable

is an important problem in petrochemical industry

[25]. We can build nonparametric models on the

sample data, such as spline curve and neural net-

works. Moreover, we also know that t is monotoni-

cally increasing in p over its domain, which is the

prior knowledge of the model. Therefore, we must

make sure that the models conform to the prior

knowledge.

In this paper, IDEP algorithm written using Matlab

5.3 is applied to modeling the true boiling point curve

of crude oil. The sample data of a certain kind of

crude oil are listed in Table 1. Here the mass percent-

age p corresponds to x, and the distilled temperature t

corresponds to y. In addition, in order to speed up the

training process, t is normalized to (t�min{t})/

(2(max{t}�min{t})) beforehand. Note that because

of the possibility of the nonmonotonicity between the

sample data 22 and 23, we will not extract them as the

testing data in cross-validation. The neural network

uses a 1-7-1 structure. The training parameters are: PE

¼ SSE ¼
P

iðyi � ŷðxiÞÞ2 , goa l = 1 �10 � 4 and

epochs = 100,000. The parameters of IDEP algorithm

are Np = 100, CR = 0.9, F = 0.9, q0 = 1, l0 = 0.001,

linc = 10, lmax = 1�1010 and Rlmd = 0.05.

The ŷ(x)–x curve of the first model trained by

IDEP algorithm in cross-validation is illustrated in

Fig. 6a. For comparison, the curve of the model

trained by NC-LM algorithm, and the cubic spline

interpolation curve proposed by Hu [26] are also

plotted in Fig. 6a. In addition, the curves of the

models trained by another three prior-knowledge-

based methods, J.PF, IP and EW are plotted in Fig.

6b. The detailed performance data of the methods

mentioned above, as well as the NC-CGF, NC-DET

and DEP algorithms, are listed in Table 2. Here, the

parameters for NC-DET and DEP algorithm are

Np = 100, CR = 0.9, F = 0.9, which are same as those

in IDEP algorithm. The parameters for NC-LM algo-

rithm are l0 = 0.001, linc = 10, lmax = 1�1010, also

same as those in IDEP algorithm. The parameters for

NC-CGF algorithm take the default values in Matlab

[27]. The parameters for J.PF, IP and EW methods are

same as those in Ref. [6].
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From Table 2, we can see the model trained by

IDEP algorithm exhibits very good approximation

accuracy. More importantly, it also shows outstand-

ing prediction ability. Both its AreA and dre are the

smallest among the different methods, which

implies that it can predict with high accuracy and

stability. Moreover, we see IDEP does not produce

any model that violates the prior knowledge in

cross-validation. Now let us also come to analyze

the other algorithms according to their simulation

results: DEP algorithm does not predict well since

it cannot approximate the sample data as desired;

NC-DET and NC-CGF algorithms do not incorpo-

rate any prior knowledge constraints, and they are

also inferior in approximation, therefore, their

resulting models contain many nonmonotonic inter-

vals as we suppose, and their approximation and

prediction results are worse, even absurd, such as

AreA ¼ 35199:7 . J.PF, IP and EW methods also

have some disadvantages compared with IDEP

algorithm, and the reasons will be discussed in

detail in Section 7.

On the other hand, in order to compare the speed

and search ability of different algorithms, we

employ these algorithm (IDEP algorithm, as well

as NC-DET, DEP, NC-CGF and NC-LM algorithm)

to build the first model in cross-validation for 10

times with different random seeds. In addition, for

each algorithm, the first one of the 10 evolution

processes is plotted Fig. 7, which describes the

relationship between the performance and the evo-

lution epoch. Table 3 lists the detailed performance

data of these algorithms, including the average

number of generations or epochs for 10 times

(denoted by Gen), the mean of the smallest fitness

in the last generation (denoted by PEf), and the ratio

of the times that the training goal is achieved to the

total training times (denoted by Cg/Ct, where

Ct = 10). From these data, we can see that IDEP

algorithm has achieved the training goal all the 10

times. However, NC-DET, DEP and NC-CGF, have

never achieved it. NC-CGF is early-stopped because

it reaches the minimum step size. Moreover, to

obtain the same approximation accuracy, IDEP algo-

Fig. 8. Comparison between IDEP algorithm and other methods in modeling pressure effect on entropy of crude oil.
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rithm requires fewer epochs than NC-DET, DEP and

NC-CGF algorithm, but more epochs than NC-LM

algorithm. Note that each epoch of EAs may con-

sume more time than non-EA algorithms, and the

actual training time depends on many factors, which

we will not discuss here.

6.2. Modeling the curve of effect of pressure on

entropy

Other than the true boiling point curve, we also

verify the methods by modeling the curve of effect of

pressure on entropy. The sample data [28] for the effect

of pressure Pr on entropy S (reduced temperature

Tr = 1.00) of a kind of crude oil are listed in Table 4.

From the curve in Fig. 7 H1.5 [28], we can see that the

effect of pressure on entropy is monotonically increas-

ing over its domain, which is the prior knowledge of the

model. Simulation network models can replace the

curve. However, the model trained by NC method will

be nonmonotonic at some intervals. Here, IDEP algo-

rithm is applied to overcome the problem. In the

simulation, Pr and S are normalized to (Pr)/(10) and

(S�min{S})/(2(max{S}�min{S})) before further

process. The sample data 17, 18 and 19 are not

extracted as the testing data in cross-validation because

of the possibility of the nonmonotonicity among them.

The structure of the neural network is 1-7-1 and the

training parameters are: PE ¼ SSE ¼
P

iðyi � ŷðxiÞÞ2,
goal = 1�10 � 3 and epochs = 100,000, all other

parameters are same as those in modeling the true

boiling point curve. The simulation curves are plotted

in Fig. 8, and the detailed performance data are listed in

Table 5, from which we can see IDEP outperforms all

other methods again.

7. Analysis and conclusion

7.1. Discussion of IDEP algorithm

The key parts of IDEP algorithm are flip operation,

LMD and RP strategy. We will discuss them respec-

tively in this section.

The main purpose of flip operation is to adjust the

weights of a network so as to conform the prior

knowledge constraints. In addition, it can generate a

new valid network to increase the diversity of the

population so that it can prevent the premature during

the evolution.

In LMD strategy, l0 and lmax define the search

range of LM algorithm, and linc defines the increasing

speed of l during the search. Usually, a broad range

and a small increasing speed mean a relatively thor-

ough search, but it will consume more time. On the

contrary, a narrow range and a large speed lead to a

fast but inexact search, which will probably miss

some feasible solutions. Therefore, when using

LMD strategy, a compromise between consumed time

and search accuracy must be considered. Usually the

above parameters are selected according to experi-

ence. However, a set of adaptive parameters may

work better. We will discuss this in other papers.

The control parameters of RP strategy are the initial

magnitude of noise q0 and its decreasing strategy.

Generally a large q0 and slow decreasing speed can

Table 5

Performance of the different prior-knowledge-based methods in modeling the effect of pressure on entropy for a crude oil

Method Mean of

approximation

accuracy (MSE)

Mean of

relative prediction

error (AreA)

S.D. of relative

prediction

error (dre)

Number of nonmonotonic

models/total models

in cross-validation

Nonmonotonic

interval of the first

model in cross-validation

NC-LM 2.9577� 10� 5 0.1062 0.3042 20/30 [1.20, 1.72]

NC-CGF 1.9952� 10� 4 0.0754 0.1472 30/30 [1.57, 2.05]

NC-DET 3.1147� 10� 4 0.3381 1.2574 25/30 [0.001, 0.029]

IDEP 2.9483� 10� 5 0.0465 0.1012 0/30 None

DEP 1.0135� 10� 3 0.1866 0.5006 0/30 None

J.PF 5.4455� 10� 4 0.1298 0.3409 14/30 None

IP 2.6481�10� 5 0.0667 0.1907 10/30 [1.08, 1.18]

EW 3.0292� 10� 5 0.0738 0.1861 0/30 None
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increase the probability to obtain more feasible solu-

tions, but will also increase the evolution time. Accord-

ingly, a small q0 and fast decreasing speed will work

contrarily. This is also a compromise, which can be

solved by experience or adaptive methods.

7.2. IDEP as a prior-knowledge-based algorithm

IDEP is a kind of WC methods according to the

classification in Refs. [3,6]. It restricts the weight

matrixes by excluding all the individuals that violate

the prior knowledge during the evolution, so the final

solution will strictly conform to the prior knowledge.

On the contrary, almost all the DC methods cannot

guarantee to satisfy the prior knowledge, e.g. IP

method. Neither are some of the WC methods, e.g.

J.PF method. As to the AC methods, although they

inherently conform to the prior knowledge, usually

they demand some skillful design.

EW method introduces the exponential computa-

tion based on a strengthened condition, which makes

the approximation difficult. Therefore, the approxi-

mation and prediction ability of EW are worse than

those of IDEP algorithm.

Now let us compare IDEP with J.PF method. Both

J.PF method and IDEP algorithm are based on opti-

mization methods. J.PF employs the exterior penalty

function method, which will induce networks to

satisfy the prior knowledge since those violating the

prior knowledge will be penalized. However, it still

cannot ensure that the resulting models will com-

pletely satisfy the prior knowledge. Moreover, the

introduction of the penalty function will also affect

the approximation accuracy. That is the reason why

the approximation accuracy of J.PF is not very good.

On the other hand, IDEP algorithm is based on EAs,

which operates on a population of weight matrixes to

perform optimization. Networks that violate the prior

knowledge will not be penalized like J.PF does, but

simply be rejected once found. Such a strategy is

feasible because there are so many individuals in

population that the rejection of several individuals

will not have a significant impact on the solutions as a

whole. In addition, because no penalty function is

used during the training process, the approximation

accuracy of IDEP algorithm remains high.

In this paper, we only discuss the prior knowledge

of increasing monotonicity. However, it is easy to

generalize it to the decreasing monotonicity and other

kinds of prior knowledge by modifying the flip

operation accordingly.

7.3. IDEP as a training algorithm

By employing LMD strategy to speed up the local

search, the converge speed of IDEP algorithm is much

faster than NC-DET, DEP, and NC-CGF algorithms.

But due to the prior knowledge constraint, it is still

slower than NC-LM algorithm.

During the population evolution, flip operation,

LMD and RP strategy can increase the probability

of introducing new individuals into the population and

help algorithm to find a global or satisfactory mini-

mum, which means IDEP algorithm possesses a good

approximation accuracy. On the contrary, NC-DET

and DEP algorithm is prone to premature, and NC-

CGF algorithm will often get trapped in a local

minimum.

Therefore, IDEP algorithm is a fast, high effi-

ciency, and robust algorithm for network training. In

addition, by slightly modifying IDEP algorithm, it can

be generalized to a wide range of network training

problems besides the prior knowledge constraint.

8. Conclusion and future investigations

This paper proposes an IDEP algorithm and dis-

cusses its application in modeling chemical curves

with the increasing monotonicity constraint. IDEP

algorithm works very well in encoding the prior

knowledge into networks during network training.

However, many further works remain to be done

along the following research directions:
. The methodology of encoding any kind of prior

knowledge into networks by modifying the current

IDEP algorithm.
. The strategy of the parameter selection and

adjustment in IDEP algorithm, such as an adaptive

strategy:

	 Accurate theoretical analysis for the astringency

and complexity of IDEP algorithm.
	 The generalization from IDEP algorithm to a

common training algorithm for feedforward net-

works and other kinds of neural networks.
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